AD=A119 145 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/6 5/2
THE U.R. STRIKES BACK.(U)
JUL 82 J D ULLMAN. AFOSR-OO-OZIZ
UNCLASSIFXED STAN=CS-81~-881 AFOSR=TR=82-06

October 1951 Report. No. STAN-CS-81-881 @

P s, Cop

The U. R. Strikes Back ‘

by

Jeffrey D. Ullman \ C

AD A119145

7
A,
;
<
?

| wfﬂ— 02/2

Department of Computer Science ‘
~ |
- Stanford University
_ i Stanford, CA 94305
|
-
~
L g

-3 g ‘
- !
£ - |
Approved £or '
publie
d rele ‘
istridbutioen ““limited.ase H ;"
@
b
& v

UNCLASSIFIED
ucuamr CLASSIFICATION OF THIS PAGE (When Dots Entered).

W 8 2 0 6 4 8 l;;c‘w;) 'A;:;c's:‘u;'uo. 3. RECIPIENT'S CATALOG NUMBER

REPORT DOCUMENTATION PAGE BEF oo e O oRM

0. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVE RED
THE U.R. STRIKES BACK TECHNICAL
€. PERFORMING ONG. REPORT NUMBER
7. AUTHOR(s) $. CONTRACT OR GRANT NUMBER(s)
Jeffrey D. Ullman AFOSR-80-0212
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :.°G=‘=ozl"x=“5r:n%u%‘£!cs? TASK
Department of Computer Science
Stanford University PE61102F; 2304/A2
Stanford CA 94305
11. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
Directorate of Mathematical & Information Scienceg Jul 1982
Air Force Office of Scientific Research 15. NUMBER OF PAGES

Bolling AFB DC 20332

. MONITORING AGENCY NAME & ADDRESS(If different {rom Controlling Olfice) 15. SECURITY CL ASS. (of this report)

UNCLASSIFIED

1S4, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dif{ferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revares eide if necessary and identify by block number)

20. ADSTRACT (Continue on reverse slde If necessary and identity by block number)
In this paper, the authors try to put to rest many of the objections to the

universal relation concept that have appeared in the literature. First, they
" shall taxonomize the varieties of ideas that are sometimes called the ‘'univer-
sal relation assumption', Then, they shall consider some of the arguments pro
and con. In some cases, the arguments against were expressed prematurely, and
solutions to the problems they expose have since been found. In other cases,
the arguments against are simply fallacious. In still other (CONTINUED)

DD ,%%'5 1473 woimion oF 1 wov ¢8 13 oesOLETE

——UNCLASSTFIED
SECURITY CLASSIFICATION OF TH(S PAGE (When Date Entered)

- . e e A e e S Nl s i MR e e i i

~— ' :

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Bntered)

i UNCLASSIFIED _
|

\

|

\

ITEM #20, CONTINUED: cases, the problems pointed ocut are real, but simply serve
to point out that the advantages of the universal relation are not gotten for

‘ free. The authors shall conclude the paper with a description of the algorithm
' used to interpret queries .in System/U, and the reasoning behind it.

e ———— et ——
s, L
F R e

e

oal N

cmeemen e e

L vwen

S TR TR W R T T T R

B e T o I
. .

r

TIIE U. R. STRIKES BACK
Jefltey D. Ulimant
Stanford University

ABSTRACT

"In this paper, we try to put to rest many of the objections to the universal relation concept that

have appcarced in the literature. First, we shall taxonomize the varieties of ideas that are sometimes
called the “universal relation assumnption.” Then, we consider some of the arguments pro and con.
In somne cases, the arguments against were expressed prematurely, and solutions to the problems
they expose have since been found. In other cases, the arguments against are simply fallacious. In
still other cases, the probiems pointed out are real, but simply serve to point out that the advantages
of the universal relation are not gotten for free. We shall conclude the paper with a description of
the algorithm used to interpret querics in System/U, and the reasoning behind it.

1. The Universal Relation Assumptions

We can identify five different idcas that have at various times and places gone under the name “universal
relation assumption.”

1.

The idea that all the attributes are initially available for the purpose of arbitrary combination into
relation schemes as we do a database schemne design has been used, for example, in {B]. The underlying
assumption is that we have donc suflicient renaming of attributes that a unique relationship exists
among any set ol attributes, and the assumption is occasionally criticised for this reason. Let us call
this version the universal relation scheme (UR Scheme) assumption.

There is the notion, which appears to be tacitly present in [C], but which is surely found in [ABU],
that an important criterion to be satisfied by a database scheme is that it possess a Jossless join, i.c.,
when a hypothetical universal relation is projected onto the relation schcmes, and the projections are
joined, the original universa) relation results. Let us call this assumption the universal relation/lossless
Jjoin {(UR/LJ]) assumption. Notice the emphasis on the word “hypothetical” describing the universal
relation connected with the UR/LJ assumption. The UR/LJ assumption does pot require that the
universal relation actually exist, or even that it be meaningful. We merely assert that by thinking about
this bypothectical universal relation, one can get some clues as to how the database scheme should be
designed.

There is an assumption, in [HILY), c.g., that the database system should strive to maintain a collection
of relations that are the projections of some one universal relation. This assumption, called the Pure
UR assumption, is one that] shall not defend, although the questions it raises are intercsting.

There is the assumption from [FMU] that the universal relation may be assumned to satisfy a single join

dependency and a collcction of functional dependencies. In particular, any multivalued dependcncies
that hold will follow logically from the join dependency. There is a lot of power that stems from
this assurnption, as we shall sec when we get to the question of how System/U interprets qucries. In
particular, it provides us with the mechanics to interpret arbitrary querics about the universal relation
as if that relation actually existed. Ilowever,] am not willing to defend it categorically. As far as |
would go is Lo say that with the addition of user-defined maximal objects [MU1] to simulate embedded
multivalued dependencies that do not follow from the join dependency, there is a good chance that
whatever semantics for the UR the user wishes will be delinable in these terms. Let us agree to call this
the UR/JD assumption.

A strengthening of the UR/JD assumption is that the join dependency that the UR satisfics must be
acyclic in the sense of [FMU]. Call this the Acyclic JD assumption. Among other bencfits, there is a
strong scnse, described in [MU2], in which an acyclic join dependency imnplies a unique interpretation
of queries over the universal relation. It appears that this assumption is too strong to hold in general,
although by renamiug atiributes that are uscd in two dillerent senscs, it becomes possible to make the
structure acyclic in morc instances than detractors might imply. Further, when the UR structure is

1 Work partially supporied by AFOSR grant 80-0212 In sccordance with NSF agreement IST-80-21358 and by NSF grant
MCS-80-12907.

P S it ACAEIA P L P « o o Rt

AcCQ"'4'
NT!.
DTIC T
Uncnnao.
Justilt.

By . —

Avatla'
"Avi
Dist | ¢

not acyclic, it is possible to construct a collection of acyclic maximal objects that provide most of the
bencehit of the Acyclic JD assumption at a penalty of making it more diflicult to express certain queries
than it would be under the UR/JD assumption.

II. The Case for the Universal Relation View

Before considering in detail the criticisms of the various universal relation assumptions, let us review why
the author belicves the concept worth considering in the first place. The merit of the concept is that it
allows the user to query a database as if there were a single rciation. This relation may have nulls in certain
components of cerlain tuples, and these nulls sbould be marked, that is, all nulls are different, unless equality
follows from a given functional dependency. For example, if we don’t know Jones' address then there is a
symbol that stands for “the address of Jones” in every tuple of the universal rclation in which that address
should logically appear, and in no others. Remember that this universal relation doesn't actually exist,
except in the user’s mind, so the nulls may not appear in the actual database.

Tbe purpose of allowing the user to see the database as a single relation is that he is thus rclieved of
the pecd to learn about many details of the database structure.

Example 1: Suppose we have attributes E (employee), M (manager), and D (“cpartment). The user should
be able to say something like

retrieve(D)
where E =‘Jones’

without concern for whether there is a single relation with scheme EDM, or two relations ED and DM, or

even EM and DM. |

Let us not infer from Example 1 that no knowledge of the database’s semantics is required of the user.
It is a matter of taste whether understanding concepts like “employee” and “department” and their expected
relationship is much easier on the user than understanding what an ED relation means. [think there is
some gain in intuilion to be had by the universal relation viewpoint, and surely, many queries are easier to
express in this way than in a query language that deals with individual relations.

There is more empirical evidence that the universal relation user view justifies the attention given to
the concept.

1. There has been a history of success in a variety of datahase applications using Brian Kernighan’s
system/q at Bell Laboratories [A). This systcm supports a universal rclation by means of a rel file,
which is a list of joins that could be taken if the query requires it; the first join on the list that covers all
the needed attributes is taken. If there is no such join on the list, the join of all the relations is taken.

2. A variety of natural language systems, such as [C*], [DSK], and [Mo], tacitly usc the universal rclation
as a user view. Indced it is hard to sce how a natural Janguage systcin could reliably use anything clse,
although certain words could, and are, used to infer that certain relations are being talked about.

Let us therefore take as a point of departure that there is som2 utility in considering a system that
supports the universal rclation as a user view. We are not saying that every database should be implcmented
in this way, or cven that it could; we just contend that there is enough of a chance that the concept will be
uselul in a given context, and cnough benefit to the user if it is, that the approach should be considered.

If we assume the universal relation as a user view, then we must make the UR/LJ assumption when we
design the actual database. The reason is that if we do nuot have a lossless join for our database scheme,
then the database will not represent a unique universal relation |[ABU}, which is strong cvidence that the
databasc is not adcquale for the task we have assigned it. We also must make the UR/JD :wsumption; the
justification is given in [FMU]. We cannot assume that the join dependency we get wii! be “intcresting”
though. The assumption that it usually has a great deal of structure, that is, many terms of a few attributes
each, is a matter of belief. Obviously, we have also made the UR Scheme assumption, but the other two
assumptions, the Pure UR and Acyclic JD sssumptions, have not been made.

| Distripu+ OI. Attacks on the Universal Relation Assumptions

Let us now contider a noncxhaustive list of the arguments that have been used against one or more of these
assumptions. We maintain thatl, in a scnse, neither the arguinents nor their refutations are important. The
fact that systemns using the concept exist and arc successful, cven in a limited context, is a more powerful

A ket ML o

refutation of the arguments against the universal relation idea than are any convolutions of logic that the } ;
author can provide. ;

The Pure UR assumption is responsible for certain inadequacies of Boyce-Codd normal form.

This viewpoint, from [BG], is an example of a premature attack on the UR concept. The problems mentioned i
by [BG) center around the inability of the authors to think of a way to do updates to universal relations in s
the presence of null values. This issue is certainly important if we are to support the universal relation as a P
user view, and [BG] is quitc correct in pointing out that a problem, not completely resolved today, exists.

Unfortunately, in analyzing the problem, the authors use only a single null value, and make an vnfounded
assumption that when inserting, a tuple that is more defined than another causes deletion of the less defined :
tuple. In contrast, at the same time [BG] was being written, works such as [KU] and |Ma] were developing L
a semantics of nulls that assumed all nulls were different and could bc made equal only if it followed from
given dependencies. One error [BG, p. 253] makes is assuming that

“The correct action apparently is to replace <null, null, ¢> by <v, 14, g> [which is another tuple
in the relation being talked about].”

Atamera .

in a situation where the third component does not functionally determine either of the other components.
Their “correct action” is incorrcet because there is no logical justification for why the first null equals v or
the second equals 14.

Another problem of [BG] concerned deletions. The authors did not have available to them the deletion ‘ ‘]
strategy of [Sc], which replaces a deleted tuple t by all tuples that have the components of t in proper subscts
of the nonoull components of ¢, and nulls elsewhere (tbere is also the constraint that the nonnull components
must be an “object” in the scnse of [Scj, i.e., have meaning as a unit). Indecd, not ail deletions are permitted
by [Sc}, on the grounds that certain oues do not make sense, but his theory is consistent, and it does explain
away many of the objections of |BG].

Incidentally,] belicve that the problems with BCNF arc not caused by the universal relation assumption
in any form. Rather the problem is that the violating dependencies are observations that follow from the
“physics” of the situation, but contribute nothing to the database structure. They should simply be ignored.

The work of [BG] does point out the need for a consistent theory of updates for a universal relation
system. It is probably not completely satisfactory to do, as system/q does, all updates as processes on files
scparate from the query system itsell. However, the works cited on semantics of nulls do provide a reasonable
theory of updates for universal relations. Work on the issues remains to be done, and it is an important
open question to find the limits on our ability to update universal relations in a meaningful fashion.

Because attribute splitting is nccessary to have the UR Scheme assumption, attribute names will in effect
bave their relation attached to them anyway.

This view is expressed by [Ke), for example. It is true that we might like to use NAME for the names of 1
employees, customers, and supplicrs, and the UR Scheme assumption forces us to use E_ NAME, C_ NAME, R
and S_NAME, for example, and it is also true that this usage is not an improvement over somcthing like

EMPS.NAME, CUST.NAME. and SUPS.NAME.

However, the assumption that every attribute, or even most attributes, musy be modified this way does :
not scem Lo be borne out in practicz. The criticism scems to make the underlying assumption that unless
a new mcthodology is always better than the old, it is of no usc at all. Furthermore, the eriticism misses
the point in assuming that the only thing the universa] relation idea is alter is a short way of relerring to
attributes. Far more important than this is the transparency of connections in the database. I don’t mind
admitting that the name I am talking about is a8 customer’s name when I write

retrieve(BILLS)
where C_ NAME="'Jones’

il T can be spared the burden of explaining to the system that customers are conncected to bills by looking
up the custowmer’s eredit card number in onc relation, finding the sales slips with that number on them in
another relation, and then finding the invoices referring Lo each of thosc sales in a third relation.

3

BALANCE
—_—
{EMBER SUPPLIER\ s_@
ADD

Fig. 1. The HVFC Database.

The UR/LJ assumption is nothing more than defining a view—one that is the natural join of all the relations.

There is an important difference concerning the way qUeri'e'B are interpreted. We shall say more about query
interpretation in Section V, but for the moment, lct us suggest what the difference is with a simple example.

Example 2: In Fig. 1 we see the hypergraph representation of the objects (minimal, logically connected sets of
attribuies) in the Happy Valley Food Coop example from |[U). The rclations of the database would probably
be supersets of some of these objects. For example, MEMBER, ADDR, and BALLANCE would probably be
grouped in ope relativ., ORDER#, QUANTITY, ITEM, and MEMBER in another, SUPPLIER and SADDR
in one, and SUPPLIER, ITEM, and PRICE in a fourth.

We could define a view that was the natural join of these four rclations and make queries about this
view. However, consider a query like

retrieve(ADDR)
where MEMBER="'Robin’

If, say, Robin had placed no orders, or he had placed orders, but not for items that bad supplicrs at the
moment, the natural join view would have no tuples with MEMBER="Robin’, azd we would get no address
in rcsnonse.

however, if we use the System /U interpretation of queries, from Section V, we discover that all but the
MEMBER-ADDR object is superfuous, and we interpret the query as the obvious one on the MEMBER-
ADDR-BALANCE rclation. The di{Tcrence is that if we define the natural join view, a standard system is
required to usc strong equivalence in simplifying the query, meaning two expressions are considered equivalent
if and only if they producc the same answer for arbitrary relations. Since missing tuples, such as no orders
for Robin, make the sclection and projection on the view and on the single relation different, a standard
xystem cannot optimizc this query. On the other hand, System/U makes the Pure UR assumption when
optimizing queries, that is, it uses the weak equivalence criterion of [ASU1]. The two formulations of tbe
query (one on the natural join, the other on the MEMBER-ADDR-BALANCE rclation only) are weakly
equivalent, so System /U produces the intuitively correct answer. [

We claim the Syster /U answer is more likely to be correct than the answer that would be obtained from
the view, becausc if we ask only about Robiu’s address we probably don't care about any orders he placed.{
We should emphasize that the usc by System/U of the Pure UR assumption for query optimization is in a
sense a “kludge.” The reader . must judge if the results, especially the use of weak equivalence to optimize
queries, justify the assumnption. The reason we believe it justifiable is that dangling tuples, cven though we
admit they exist in typical physical rclations, should have no part in the answer if the query doesn't really
need their relation. Thus, the descrépancics between what would happen if the relations were the projection
of a universal relation and what happens in fact, makes no difference in the intuitively correct answer.

The Acyclic JD assumption fails to meet the intuitive criteria for absence of cycles.

This claim, expressed in [AP], appears to depend on identifying two hypergraphs that we do not consider
interchangeable. In Fig. 2 we see the banking example from {FMU], and in Fig. 3, we see what happens
when [AP] redcfincs the objects, replacing the BANK-ACCT and ACCT-CUST objcets by their union and

t If we do care, we can force the order number to be eonsidered by adding a term like ORDER#=ORDER## w0 the where-
clause. .

o Con e o A ONTIn RN STy .

'y

Fig. 2. The baoking example.

BAL
. \acc
BAN Us ADDR)
LOAN N/
AMT

Fig. 8. The banking example with different objects.

doing the same thing with LOAN. Figure 3 is acyclic in the sense of [FMU]J, as it should be, because if the
hypergraph were drawn differently, as in Fig. 4, the “hole” disappears.

However, even if that were not the case, [AP] is wrong in assuming that the hypergraphs of Figs. 2
and 3 are related. If one consuits (FMU] for the way hypergraphs are rclated to our assumptions about the
real world, we see the difference between the two figures. In Fig. 2, customers are related o banks through
accounts and loans. If two customers share an account at Bank of America, then both are related to Bank
of America. However, Fig. 3 presents a different view of the real world. It says that BANK-ACCT-CUST is
a fundamental relationship, so two customers can share an account at two differeut banks, and each will be
related to only one of the banks. Now you can guess which the author thinks is the real “real world,” but
which is correct is irrelevant; what is iinportant is that they are different.

There is another issue raised by [AP] when they justify their claim that Fig. 3 is “cyclic” by pointing
to the definition of an acyclic Bachmann diagram in [L). It is well known [FMU] that the two notions of
acyclicity are different. In addition to the remarkable properiies known for acyclicity in the [FMU] sense, as
cnumcrated in [B*), there is a very practical justification for using the [FMU] definition in the Acyclic JD
assumption. If'we minimize a query about an acyclic universal relation scheine, the resulting set of objects
to be joined should in some scnsc lie between the attributes mentioned by the query. The objects in the join
should also include all those that lie on the minima) paths connecting the attributes of the query. In [MU2]
a result of this nature is shown to apply to exactly the acyclic hypergraphs in the [FMU] sense. :

Interestingly, [Y] shows a stronger rcsult about the conncetions in those hypergraphs that are acyclic
Bachmann diagrams, but it is quecstionable whether we nced the extra strength; that is, the connections
obtained in (MU2] scem adequately strong and unique. Again, the matter of which definition of “acyclic”
you prefer is one of taste, but onc should not confusc the two notions. In fact, [F] discusses three distinct

i
BAL i

Fig. 4. View of Fig. 3 sho;ving acyclicity.

notions of acyclicity, including the two mentioned here, and compares their vitues.

The acyclic JD assumption is unreasonable because most real world databascs bave an inherently cyclic
structure.

This viewpoint is also from [AP]. I'm not sure whether I believe that or not. Surely the ability to split
attributes helps us turn cyclic structures into acyclic ones, but the cost is often high—simple queries must be
circumlocuted, by using an equijoin to connect the two formerly identical atiributes. However, splitting is
only one option. The maximal objects concept from [MU1] can be used to identify the acyclic substructures
of a cyclic one and to allow navigation through the acyclic structures automatically. The only time one
is forced to use equijoins to conncct seemingly identical items is when one's query jumps among acyclic
structures. But it is exactly at these times that the paths connecting attributes become nonunique, and the ;
extra specification of path is essential. *

suind.

Example 3: In Fig. 5 we see the example from [AP], which they attribute to [Mc], of a “real world.” That
entity-relationship diagram is translated into objects in Fig. 6. The objects have been numbered for reference,
and the functional dependencies implied by the many-one relationships of Fig. 5 have becn shown by arrows.
Since all objects are of size two, the ones that are not functional dependencics are indicated by lines rather
thao ovals as in the usual hypergraph representation. Certain of the one-one rclationships that appear to be
“isa,” or subset relationships, have been shown as functional dependencies from the subset to the superset
only. This treatment of “isa” simplifies the construction of maximal objects and adapts a suggestion of C.
Becri that “isa” be followed only from subset to superset when constructing maximal objects. It is not,
however, essential for the point to be made. We have also assuined that the relationship between sales and
customers is really the composition of the relationships from sales to orders to customers. We have thus
eliminated one of the cycles present in Fig. §, but this elimination is not essential in what follows.

If we build maximal objects as suggested in [MU1}, by starting with single objects and adjoining
additional objects if the lossless join of that object with what is already included follows from the functional '
dependencies given or from those multivalued dependencies that follow from the given join dependency (there
are no useful dependencies in this category for this example), then we get the following five maximal objects.

My =(1,2,3,4,6,7,8)} .
M3 = (5,8,9,10,11,12)
M3 = {8,9,10,13,15,18}
M¢ = {8,9,10,14,16,17}
Ms = {8,9,10,19,20}

These can be constructed starting with objects 4, 5, 18, 16, and 19, respectively.

As an cxample of the power inhcrent in this view of the database, we could answer a request from a
customer to verify the deposit of his check by a query like

t Depending on which of severa) rules are uned to construct maximal objects, they msy or may not be guaranteed Lo be scyclic..

- o

T

g -

n supplier g ’-—“—" |
of VENDOR

. | PURCIIASE
m 1 1
DY W &
item for
m n n [STOCKHOLDER | . n »

1 GENL. AND
ADMIN. SVC.

ORDER) |INVENTORY

@ line n 1 . EQUIPMENT
f1em ACQUISITION

H n
1
CASH CASH 1
|RECEIPT DISBURSEMENT—
»
Teceived) n 1 1 CASH r 1 PERSONNEL
frou d SEPVICE
1
CUSTOMER| 1 m “mployed
in
Fig. 5. Retail enterprise “real world.”
retrieve(CASH)

where CUSTOMER="Jones'
This query is perfeclly natural, and causcs the system to navigate through several objecls, and probably
through several relations, in the M; maximal object.t
As another example, the query
retrieve(VENDOR)
where EQUIPMENT="air conditioner’

is answered by giving the union of the vendors connected to the air conditioner either through “general
and administrative scrvice” in the maximal object M; or through equipment acquisition in M. That is a
rcasonable responsc to this ambiguous query, and follows the strategy suggested by [Cha, O, Sal, Sa2), for

4 Section V. discusses the Systemm/U treatment of queries; the reader can take the deseription given here for granted.

7

CUSTOMLR
[

ORDER PURCHASE . 12 ,)VENDOR&EQUIPMI‘NT
/N ACQUISITION..

13 16

SALE I\‘VENTORY .., GENL. AND EQUTPMENT
—1 ' ADMIN. SVC. —
3 18 ' 17
CASH 6 S CASH o 10 cASH &
RECEIP DISBURSEMENT
7 / \
CAPITAL ' PERSONNEL
TRANSACTION SERVICE
8 20
STOCKHOLDER EMPLOYEE
Fig. 6. Hypergraph for retail enterprise.
example. []

There is no way for the user of a universal relation system to know whether the answer to his query is the
one be expected.

The technique of having the system paraphrase the query, the way many natural language systems do,
would probably be of some help here. However, the fallacy in leveling this charge at the universal relation
concept is oot that no problem exists; rather, the problem is not restricted to universal relation systems.
For cxample, [CW] reports an experiment with teaching college studenta to use relational query languages,
in which after training, they still had error rates like one out of three in expressing queries that involved
joins. Il you belicve that is typical of naive, but presuinably intelligent uscrs, then it is hard to assert that
ordinary database systems always give the user what he expected. In fact, since the study of [GW] implies
that queries needing joins werc considerably harder for students to get right than were queries involving only
one relation, there is hope that 8 universal relation aystem would give them much lower error rates than
ordinary systems.

Universal telation systems fail to take into account all possible conncctions among the attributes involved in
a quersy. ’ ‘

This point bas figured into the thinking of IAP], where they discuss the “relstionship uniquencss” problem,
8

s e o e e e

and is implicit in the approach of [Sal, Sa2] in dealing with universal rclations. While there are arguments on
both sides, my own point of view is that all relationships are not equally plausible as query interpretations.
1 conjecture that a carefully designed system can deduce the user’s intent, from among possible connections,
with high enough accuracy to make the system workable. As we remarked in the subsection above, ordinary
systems are not guaranteed to “interpret” queries correctly for the simple reason that the complexities of
ordinary query languages make user errors frequent.

The following is an example of a situation where making distinctions between connections seems quite
reasonable. In Fig. 2, a query like

retrieve(LOAN)
where CUST="'Jones’

is most likely to be asking for the information in the CUST-LOAN object, not for the connection between
CUST and LOAN that goes through ACCT and BANK, to give those loans made by a bank at which Jones
bas an account. The query language should allow the latter connection to be specified if the user desires it,
but it appears to the author quite reasonable to take the simpler connection as a default in the absence of
a specification to the contrary.

The process of selectling interpretations for qucries over a universal relation is still some art and some
science. We feel, however, that progress has been made, and there is hope for more progress in the future.

TV. The System/U Data Definition Language

Now Jet us sketch the design of System/U and see how the ideas discussed above can be made to work in

practice. The design of the system uses idcas contributed by H. Korth and G. Kuper, as well as those of the

author. Earlier descriptions appear in [KU, Ko]. The data definition language includes the following kinds

of declarations. '

1. Attributes and their data types.

2. Relation names and their schemes (sets of attributes).

3. Functional dependencies.

4. Objects, which are sets of attributes, and the relation from which each object is taken, with possible
attribute renaming allowed.

5. Maximal objects, which are sets of objects.

Points (4) and (5) rcquire some elaboration. Objects are the edges of the hypergraph that defines the join
dependency assumed to hold in the universal relation. They are, intuitively, the minimal sets of attributes
that have collective meaning, and the term is taken from [Sc], where the concept was first developed. For
example, in terms of the entity-relationship model [Che], an attribute or attributes that form a key for an
entity sct will be found in one object for each of the propertics of that entity set; the object includes only
the kcy and the one property. Relationships are represented by objects consisting of the keys for the related
entity scts.

Each object is assumed to be contlained in one rclation, perhaps properly contained if the relation is
unnormalized, or if the relation consists of a key and many properties of that key. We allow renaming of
attributes so that the same relation can be used for many objects that are eflectively identical.

Example 4: A genealogy can be based on a single relation C P, the child-parant relationahip. We might declare
attributes PERSON, PARENT, GRANDPARENT, AND GGPARENT, with objects PERSON-PARENT,
PARENT-GRANDPARENT, AND GRANDPARENT-GGCPARENT, each defined to be the CP relation with
the obvious correspondence of attributes. We could then ask

retrieve(GGPARENT)
where PERSON="'Jones’

and find the great grandparents of Jones in the obvious way, taking what the system thinks are natural
joins, but are really equijoins on the C'P relation.

As another example, we could make the banking database of Fig. 2 acyclic (a step we do not rec-
commend) by splitting CUST into DEPOSITOR and BORROWER and splitting ADDR into CADDR and
BADDR. We would then usc objects ACCT-DEPOSITOR, LOAN-BORROWER, DEPOSITOR-DADDR, and
BORROWER-BADDR. One problem with this approach (in addition to forcing the user to remember the
unimportant dilference between BADDR and DADDR, which is why we do not reccommend the split) is that

o AR AL i R

P ACCT . . !
cncsbovcaa mMdeace oue “uluhadiad 0"°“‘o.~\'

1 ! BANK CUST — ADDR '’
. h~5§-.\-~-55~ . s o G > amw =T
K LOAN e 4
\. ’0
Y ’ -
\\. -
‘<o AMT __-~ :
- - "\'

Fig. 7. Maximal objects in the banking example.

we appear to nced two relations recording names and addresses, and many of thesc will be duplicates, when a

customer is both a borrower and depositor. However, we can create one relation of names and addresses and

declare both objects DEPOSITOR-DADDR and BORROWER-BADDR to be this relation, which alleviates

at least one problem. || 1
The fifth item above, declaration of maximal objects, also requires some explanation. The system

computes maximal objects itself, using the functional dependencies and multivalued dependencies implied by

the join dependcncy on the objects.t However, the user can override the automatic computation by declaring

additional maximal objects. The system then throws away those of the maximal objects it computes that

are subsets or supersets of the declared objects. One important use of this feature is in simulating embedded

multivalued dependencies, which have no place in System /U otherwise.

Example 5: Suppose in the banking example of Fig. 2 we dccide that the functional dependencies
ACCT—BANK, ACCT—BAL, LOAN~BANK, LOAN—AMT, and CUST—ADDR .

hold. Then the two maxiral objects showsn in Fig. 7 would be constructed.
A query .ike .

retrieve(BANK)
where CUST=‘Jon¢=’{

would give the banks at which Jones has either a loan or account, since CUST is connected to BANK in two
diffcrent ways through the two maximal objects.

However, suppose wz denied the functional dependency LOAN—BANK. That means, intuitively, that
loans can be made by consortiums of banks. The lower maximal object in Fig. 7 is now replaced vy two,
BANK-LOAN-AMT, and CUST-ADDR-LOAN-AMT. If we ask the query above, we get only the banks at
which Joncs has accounts, because only the top maximal object connects CUST to BANK now.

Perhaps the reader feels that this answer is satisfactory, because the connection between BANK and
CUST through LOAN is now “weaker” than through ACCT. More likely, the reader feels that the connection
through LOAN is still just a¢ valid as that through ACCT. Intuitively, the reader probably has in his mind
the model in which each bank in a consortium has made the loan to each borrower of that loan. If that is
the case, then there is an embedded multivalued dependency LOAN——BANK | CUST. It turns out that the
practical effect of this multivalued dependency can be achieved by declaring the lower maximal object of Fig.
7 to hold, eveo though it won't follow from the given functional dependencies or from the join dependcacy
on the objects. [

V. The System/U Query Language

We shall now sketch the ideas behind the query language and its implementation. The language itself is
essentially QUEL [S*], with the following important differcnce. Since all tuple variables range over the
universal rclation, there is no nced for a range statement or declaration of tuple variables. Furthermore, an

TA: s result, maximal objects may not be acycelic. They will always have a Jossless join, however.

10

IORND

Fig. 8. Courses example.

attribute ‘A by itsell is deemed to stand for b.A, where b is the '~nk tuple variable, a tuple variable that
pever appears but is inserted when we translate queries. ln the vast majority of queries, all one needs is the
blank tuple variable, but we provide others so you can find out about employees that make more than their
managers and other important information by queries like

retrieve(EMP) :
where MGR=t EMP and SAL>t.SAL

The translation process we use for queries is

1. For each tuple variable, including the “blank” tuple variable that we associate with attributes standing
alone, assign a copy of the universal relation. Begin by taking the Cartesian product of all these copies
of the universal relation.

2. Apply to the Cartesian product the selections implied by the where-clause, and the projection implied
by the list of attributes in the rctrieve-clause.

3. Substitute for the copy of the universal relation associated with tuple variable ¢t (which may be the
blank tuple variable) the union of all those maximal objects that include all the atiributes A such that
t.A appears in the query.

4. Substitute for cach maximal object the natural join of all the objects in that maximal object.

5. Replace each object by an expression involving the actual relations in the database. Recall that each
object is the projection (perhaps with renaming of attributes) of a relation in the database.

6. The resulting expression is optimized by tableau optimization techniques [ASU1, ASU2, SY]. We both
minimize the number of join terms in each term of the union and minimize the number of union terms.
Each of these minimizations can be donc exactly, the first by [ASU1, ASU2], and the second by {SY]. As
we minimize rows of a tableau, we should remember the relation from which each row comes (although
we do not refrain from mapping rows to rows that come from dillerent relations). When the minimal
tableau is reached, we can use this information to reconstruct the optimized join expression. There is
an important special case where, although the minimal tableau is unique, as it must be, we can obtain
it by eliminating one of scveral rows in favor of another. In that case, we must take the union of all the
join expressions that correspond to versions of the minimum tableau with rows and relations identified
in any possible way.

Example 8: Consider the database of Fig. 8, where the objects are CT,CHR, and CSG, and let the relations
in the actual databasc be CTHR and CSG; note that the first of thesc happens not to be normalized. This
database is the courses, teachers, hours, rooms, students, and grades example from [U], and the mcanings
of the attributes should be obvious. Let the query in question be

retricve(t.C)

where S=‘Joncs’ and R = t.R
That is, print the courscs that somectimes meet in rooms in which some coursc taken by Jones mects.

In step (1), we begin by using C; Ty H, R, S, G\ as the copy of the universal relation corresponding to the
blank tuple variable, and the same set of attributes subscripted by 2 for the copy of the universal rclation
for the tuple variable ¢. For siep (2), only C; is mentioned in the retricve-clause, and the selection condition
is that S)="'Jones, and that R; = Rj. Thus, the algebraic expression constructed at step (2) is

%C, (05, m Jones' AR, =R, (C1 T1 H Ry §1 Gy X CszHszSsz))

where x stands for projection and o for selection.
The database of Fig. 8 being acyclic, the only maximal object is the entire database [MU1]. As both ¢

11

CiTVH R 5 G Ca T3 Hy Ry S; Gy

a)
b b
b b b
bl ¢ b; -
a; b
a; by by
8 bg by

Fig. 9. Tableau for constructed expression.

and the blunk tuple variable are surely associated only with attributes that are in this one maximal object,
the union ut step (3) is simply this one maximal object i in each case. In step (1) we substitute

CT MC;H:R] =1C) 5,6,

for C,TyH, R, 5,G,, and make a similar substitution for C3T; H3 RS2G4 in the above expression. Then, in
step (5), we replace C1Th by ne,7,(C1T1H R} and C H Ry by nc, 1, g, (C1 T1 Hi R;) and then do the same
for the objects involving C5,...,G2. Figure 9 shows the tablcau for the resulting expression.

In Fig. 9 we have shown the distinguished symbol by a;, the constant ‘Jones’ by ¢, and some of the
nondisting iished symbols by subscripted b's. All blank positions represent nopdistinguished symbols that
appear nowhere else. The optimization of Fig. 9 takes place by a straightforward application of the method of
(ASU1, ASU2]. However, in System/U we make several simplifications that secm not to cause optimization
to be missed very frequently, and leads Lo considerable efficiency. First, we treat every variable that is
constrainec in the where-clause as if it were a constant in the sense of [ASUl, ASU2]. These symbols
effectively prevent their rows from being mapped to others in a tableau reduction. In Fig. 9, we used the
constant ¢ to enforce the constraint S="'Jones' and we represcnt the constraint R = t.? by the fact that
b¢ appears in two different columns; the result is that the rows containing by cannot be mapped to any
other row, making b, in eflect a constant. The algorithm of [KI} to minimize tableaux in the presence of
arithmetic constraints could be used to improve our potential for optimization, although it is not clear how
much beneft would be obtained in practice.

A second simplification we make is to assume that the maximal objects arc acyclic (although in pathologi-
cal cases, functional dependencies could produce cyclic ones), and reduce the tableau by the simple process
of testing whecther some one row can map to another by the process of symbol renaming as in [ASU1].

For example, in Fig. 9, the first row maps to the second if we rename bg to the blank in the T} column
of the second row. Similarly, rows 4 and 6 map to 5. We cannot map row 3 to row 2 because ¢, being
a constant, cannot map to the symbol represented by the blank in the S, column of row 2. Also, rows 2.
and 5 cannct map to any row, because by would bave to become two different symbols simultaneously. The
optimized tibleau will retain only the second, third and fifth rows of Fig. 9 (plus the summary row with a,
alone).

The remaining rows, 2, 3, and 5, come from relations CTHR, CSG, and CTHR, respectively. If we
use the optimization strategy of [WY], say, to select an order for operations, the optimized query would be
answered by a sequence of steps in which
1. we select from CSG those tuples with S='Jones’, and save the set of C-values from those tuples, say

¢
2. then sclect from CTHR those tuples with C-component in € and produce from them the sct R of their

R-values, and finally
3. select from CTHR thc C-components of tuples with R-components in R. {]

Example 9: The rule in step (6) for handling join terms that could come from several relations is a response
to tbe fact that the Pure UR assumption will not in general be satisfied. For example, suppose we have
relations ABC, BCD, and BE, and our query asks about B and E. After optimization, we eliminate either
the row for ABC or the row for BCD, but not both. -

Onc term in the join to be taken in the optimized query is BE, since this relation’s row cannot be
eliminated. The other term could come from cither the row for ABC or the row for BCD. We therefore

12

Lt T s e e, A ll'

construct the expression (ABC U BCD) ba BE, to which the selection and then projection onto BE is
performed. Since only B and E are involved in either sclection or projection, this expression can be replaced
by one of the form npg(o((xp(ABC) U xg(BCD)) > BE)). In efcct, the set of B-values to be joined with
BE is the union of what appears in the ABC and BCD relations. If we belicved the Pure UR assumption,
the set of B-values in the two relations would bave to be the same, but we don't, and it isn't. [)

Example 10: Let us consider an example where the universal relation must be composed of the union of
several maximal objects because the underlying structure is cyclic. The banking example of Fig. 7 will serve
picely. Consider the query

retrieve(Bank)
where Cust="'Jones’

There is only one tuple variable, the blank, so in step (1) we create a single copy of the universal relation.
In step (2) we apply to this relation the operators #p,akOCustm‘jones'- In step (3), we see that both maximal
objects in Fig. 7 include the attributes Bank and Cust mentioned by the query. Thus the query becomes

TBank?Custm'Jones'(Bank Acct Bal Cust Addr U Bank Loan Amt Cust Addr)

Each of these maximal objects is replaced by the join of their objects in step (4). On the assumption that
each of the objects in Fig. 7 is also a relation, step (5) bas po effcct. At step {6) we break the expression
into the union of two tableaux and minimize them in the obvious ways, deleting “ears” that do not serve to
connect Bank with Cust. The expression becomes

T Bank O Custe=Jones'(Bank-Acct ba Acet-Cust) U Xpagk0Custas'Jones’(Bank-Loan =3 Loan-Cust)

We then check whether either term of the union is a subsct of the other, but that is not the case here, and
the resulting expression is the one produced by System/U. |}

V1. Motivation Behind the Query Interpretation Algorithm

While many other interpretations of queries are possible, we feel that there are sound arguments in favor
of the six-step algorithm proposed in the previous section. The first two steps, construction of a Cartesian
product of universal rclations and application of selection and projection are analogous to the way QUEL
handles queries [WY].

Step (3), the replacement of the universal relation by the union of the maximal objects that are relevant
to the query is a matter for judgement. As mentioned previously, the idea that the union of possible
connections is what we want has been expressed by several authors. For example, the extension join method
for interpreting queries [Sa2] when the only dependencies are functional ones based on a key within one
object (key dependencies) takes a union of connections to interpret queries.d Step (4), the replacement of
the maximal object by the natural join of its member objects, follows from the fact Lthat the construction of
maximal objects we use guarantees the lossless join property for this decomposition of the maximal object
MU1]. '

Step (5) is mandatory, since we must ultimately talk about relations, not objccts. Finally, the optimiza-
tion in step (6) is guaranteed not to change the result of the query except as dangling tuples are concerned.
As we argued previously, there is good reason to think that a missing tuple in a relation that isn't on any
path connecting the attributes'mentioned by the query should not cause tuples to be delcted from the answer.

Acknowledgement

The author appreciates the comments made by Stott Parker on an earlier drafl of this manuscript.

t An important differcnce between the methods, in addition to the fact that cxtension joins ignore connections that are not
based on functional dependencies, is that Sagiv computles connections dynamically, while maximal objects are computed once
for all queries. That is, once 3n extension join rcaches far enough to cover the relevant attributes, it is not constructed further,
even though doing se might enable it to include another extenstion join. J. Gischer points out the following example. Suppose
the relation schemes are AB, AC, and BCD, with functional dependencies A—B, A=C, and BC—D. If B and C are the
relevant sttributes, [Sa2] would compute two exicnsion joins, one from BCD alouc and the other from AB and AC. lowever,
taking the usual construclion of maximal objects, we would get the one, eyclic, maximal object consisting of all three relations,
by starting with the object AB. The reader may judge If the connection between B and C through A should be considered on
s par with the connection in the single relation BCD. There seem o be arguments on both sides.

13

References

[A]
[ABU]

[ASU1]
[ASU2)
[AP]

(B°]

B
(BG]
[Cha)
[Ch;]
(Co]

[C*]

[DSK]
(F]
[FMU)
[CW]
[HLY]
(Ke]

K1)
[Ko)
[Ku]

L

Aho, A. V., private communication, June, 1981.

Aho, A. V., C. Beeri, and J. D. Ullman, “The theory of joins in relatlonal databases,” ACM Trans-
actions on Databue Systems 4:3 (1979), pp. 297-314. -

Aho, A. V., Y. Sagiv, and J. D. Ullman, “Equivalence of relational expressions,” SIAM J. Computing
8:2 (1979), pPp. 218-246.

Abo, A. V., Y. Sagiv, and J. D. Ullroan, “Efficient optimization of a class of relational expressions,”
ACM Transactions on Database Systems 4:4 (1979), pp. 435-454.

Atenzi, P. and D. S. Parker, “Properties of acyclic database schemes: an analysis,” Proc. XP/2
Conl., June, 1981.

Beeri, C., R. Fagin, A. O. Mendelzon, D. Maner,’J D. Ullman, and M. Yannakakis, “Properties of
acyclic dat.abase schemes,” Proc. Thirteenth Annual ACM Symposium on the Theory of Computing,
pPp. 355-362, 1981.

Bernstein, P. A., “Synthesizing third normal form relations from functional dependencies,” ACM
Transactions on Database Systems 1:4 (1976), pp. 277-298.

Bernstein, P. A. and N. Goodman, *What does Boyce-Codd normal form do?,” Proc. International
Conference on Very Large Data Bases, pp. 245-259, 1980.

Chang, C.-L., “Finding missing joins for incomplete queries in rclational databases,” RJ 2145, IBM,
San Jose, 1980

Chen, P. P., “The entity-relationship model: toward a unified view of data,” ACM Transactions on
Database Systems 1:1 (1976), pp. 9-36.

Codd, E. F., “A relational model for large shared data banks,” Comm. ACM 13:6 (1970), pp.
377-387.)

Codd, E. F., R. 8. Arpold, J.-M. Cadiou, C.-L. Chang, and N. Roussopolous, “Rendezvous ver-
sion I: and experimental English language query formulation system for casual users of relational
databases,” RJ2144, IBM, San Jose, 1978.

Dell’'Oreo, P, V. N, Spadavecch:o, and M. King, “Using knowledge of a database world in inter-
preting natural language queries,” Proc. 1977 IFIP Congress, North Holland, Amsterdam.

Fagin, R., “On notions of acychcxty in databases and join dependencies,” unpublished memorandum,
IBM, San Jose, Calil.

Fagin, R., A. O. Mendelzon, and J. D. Ullman, “A simplified universal relation assumption and its »

properties,” RJ2900, IBM, San Jose, 1980.

Greenblatt, D. and J. Waxman, “A study of threc database query languages,” in Database: Improving
Usability and Responsiveness (B. Schneiderman, ed.), Academic Press, New York, 1978.

Honeyman, P., R. E. Ladner, and M. Yannakakis, “Testing the universal instance assumption,” Inf.
Proc. Letters, 10:1 (1080), pp. 14-19.

Kent, W., “Conscquences of assuming a universal relation,” IBM e¢hnical report, Dec., 1979, to
appear in TODS.

Klug, A., “Inequality tableaux,” to appear in JACM. .
Korth, H. F., “System/U: a progress report,” Proc. XP/2 Conf., June, 1981.

Korth, H. F. and J. D. Ullinan, “SYSTEM/U: a database system based on the universal relation
assumption,” Proc. XP1 Conference, Stonybrook, N. Y., June, 1980.

Lien, Y. E., “On the equivalence of database models,” to appear in JACM.
14

S NS T oo ik e

4

Ma)
MU)
MU2]
Mc]
Mol
(0}
|Sal}
)
5Y)
[Sc]
[5*)

v]
[WY]

Y]

Maier, D., “Discarding the universal instance usumpt.ion: preliminary results,” Proc. XP1 Confer-
ence, Stonybrook, N. Y., June, 1980. :

Maier, D. and J. D. Ullman, “Maximal objects and the semantics of universal relation databases,”
TR-80-016, Dept. of C. S., SUNY, Stony Brook, N. Y., 1980.

Maier, D. and J. D. Ullman, “Connections in acyclic hypergraphs,” STAN--CS-853, Dept. of C. S.,
Stanford Univ., Stanford, Calif., 1981.

McCarthy, W. E., “An entity-relationship view of accounting models,” The Accounting Review
54:4 (1979), pp. 667-686.

Moore, R. C., “Handling complex queries in a distributed database,” Tech. Note 170, Artificial
Intelligence, SRI Iotl., Menlo Park, Calif., 1979.

Osborn, §. L., “Towards a universal relation interface,” Proc. International Conference on Very
Large Data Bases, pp. 52-60, 1979.

Sagiv, Y., “Can we use the universal instance assumption without using nulls?,” ACM SIGMOD
Interpational Symposium on Management of Data, pp. 108-120, 1981.

Sagiv, Y., “A characterization of globally cousistent databases and their correct access paths,”
unpublished memorandum, Univ. of Illinois, Dept. of C. S., 1981.

Sagiv, Y. and M. Yannakakis, “Equivalences among relational expressions with the union and
difference operators,” J. ACM 27:4 (1980), pp. 633-655.

Sciore, E., “Null values, updates, and normalization in relational databases,” doctoral dissertation,
Princeton Univ,, Princeton, N. J., 1980.

Stoncbraker, M., E. Wong, P. Kreps, and G. Hcld, “The design and implementation of INGRES,"
ACM Transactions on Database Systems 1:3 (1976), pp. 189-222.

Ullman, J. D., Principles of Database Systems, Computer Science Press, Potomac, Md., 1980.

Wong, E. and K. Youssefi, “Decomposition—a strategy for query processing,” ACM Transactions
on Database Systems 1:3 (1976), pp. 223-241,

Yannakakis, M., “Algorithms for acyclic database schemes,” unpublished memorandum, Bell Lab-
oratories, Murray Hill, N. J., 1981.

15

e

1 Conler-
atabases,”
t.of C. S,
ng Review
, Artificial
;e oo Very
I SIGMOD
'ss paths,”
union and
ssertation,
INGRES,”

1980.

*ansactions

, Bell Lab-

FILMED

-
¥ ‘\" .
~ &

TIC

